1 Here is quadrilateral *PQRS*.

$$\overrightarrow{PS} = \mathbf{a}$$

$$\overrightarrow{SR} = \mathbf{b}$$

$$\overrightarrow{RQ} = \mathbf{c}$$

Not drawn accurately

X is a point on PS where

PX: *XS* = 1 : 2

Y is a point on RQ where

RY: YQ = 2:1

Not drawn accurately

Is XY parallel to PQ?

Show working to support your answer.

[3 marks]

$$\frac{2}{3}a + b + \frac{2}{3}c$$

[2 marks]

2 In the diagram

$$\overrightarrow{DE} = \mathbf{a}$$

$$\overrightarrow{DH} = \mathbf{b}$$

$$\overrightarrow{HG} = 8\mathbf{b}$$

2 (a) Show that $\overrightarrow{DX} = \frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}$

$$\overrightarrow{Dx} = \overrightarrow{DE} + \overrightarrow{Ex}$$

$$= q + \left(-\frac{3}{4}q + \frac{3}{4}b\right) = \frac{1}{4}q + \frac{3}{4}b \quad (shown)$$

2 (b) Is DXF a straight line?

Show working to support your answer.

[4 marks]

$$\overrightarrow{DF} = \overrightarrow{DE} + \overrightarrow{EF}$$

$$\frac{3}{4} \frac{9}{4} + \frac{9}{4} \frac{b}{4}$$

3 Two congruent parallelograms, *PQRV* and *VRST*, are joined.

Not drawn accurately

$$\overrightarrow{QP} = \mathbf{a} \qquad \overrightarrow{PV} = \mathbf{b}$$

X is the midpoint of VT.

VW: *WR* = 1:2

Prove that *Q*, *W* and *X* lie on a straight line.

$$\overrightarrow{QW} = \overrightarrow{QP} + \overrightarrow{PV} + \overrightarrow{VW}$$

$$= \underline{q} + \underline{b} + \frac{1}{3} (\overrightarrow{VP})$$

$$= \underline{q} + \underline{b} - \frac{1}{3} \underline{q}$$

$$= \frac{2}{3} \underline{q} + \underline{b} \qquad \boxed{1}$$

$$QX = \overrightarrow{QP} + \overrightarrow{PV} + \overrightarrow{VX}$$

$$= \underline{q} + \underline{b} + \frac{1}{2}(\overrightarrow{VT})$$

$$= \underline{q} + \underline{b} + \frac{1}{2}\underline{b}$$

$$= \underline{q} + \frac{3}{2}\underline{b} \qquad \boxed{1}$$

$$\overrightarrow{QW} = \frac{3}{2} \left(\frac{2}{3} a + \underline{b} \right) = \underline{q} + \frac{3}{2} \underline{b} = \underline{QX}$$

$$\overrightarrow{QW} = \frac{3}{2} \overrightarrow{QX} \underbrace{0}$$

4

Prove that *DEF* is a straight line.

$$\overrightarrow{DE} = \overrightarrow{DC} + \overrightarrow{CE}$$

$$= 6\underline{a} + \underline{b} + 2\underline{a} - 5\underline{b}$$

$$= 8\underline{a} - 4\underline{b}$$

$$= 4(2\underline{a} - \underline{b})$$

$$\frac{\overrightarrow{DE}}{\overrightarrow{DF}} = \frac{4(2\underline{a} - \underline{b})}{5(2\underline{a} - \underline{b})} = \frac{4}{5}$$
Hence, \overrightarrow{DE} and \overrightarrow{DF}

are parallel to each other.